Categories of Finite Dimensional Weight Modules over Type I Classical Lie Superalgebras
نویسندگان
چکیده
منابع مشابه
Locally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملCLASSIFICATION OF FINITE DIMENSIONAL MODULES OF SINGLY ATYPICAL TYPE OVER THE LIE SUPERALGEBRAS sl(m/n)
We classify the finite dimensional indecomposable sl(m/n)-modules with at least a typical or singly atypical primitive weight. We do this classification not only for weight modules, but also for generalized weight modules. We obtain that such a generalized weight module is simply a module obtained by “linking” sub-quotient modules of generalized Kac-modules. By applying our results to sl(m/1), ...
متن کاملLie Algebra Modules with Finite Dimensional Weight Spaces, I
Let g denote a reductive Lie algebra over an algebraically closed field of characteristic zero, and let I) denote a Cartan subalgebra of g. In this paper we study finitely generated g-modules that decompose into direct sums of finite dimensional l)-weight spaces. We show that the classification of irreducible modules in this category can be reduced to the classification of a certain class of ir...
متن کاملModule Extensions over Classical Lie Superalgebras
We study certain filtrations of indecomposable injective modules over classical Lie superalgebras, applying a general approach for noetherian rings developed by Brown, Jategaonkar, Lenagan, and Warfield. To indicate the consequences of our analysis, suppose that g is a complex classical simple Lie superalgebra and that E is an indecomposable injective g-module with nonzero (and so necessarily s...
متن کامل0 Classification of Infinite Dimensional Weight Modules over the Lie
We give a complete classification of infinite dimensional indecomposable weight modules over the Lie superalgebra sl(2/1). §1. Introduction Among the basic-classical Lie superalgebras classified by Kac [3], the lowest dimensional of these is the Lie superalgebra B(0, 1) or osp(1, 2), while the lowest dimensional of these which has an isotropic odd simple root is the Lie superalgebra A(1, 0) or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1996
ISSN: 0021-8693
DOI: 10.1006/jabr.1996.0077